635 research outputs found

    Red variables in the OGLE-II database. I. Pulsations and period-luminosity relations below the tip of the Red Giant Branch of the LMC

    Full text link
    We present period-luminosity relations for more than 23,000 red giants in the Large Magellanic Cloud observed by the OGLE-II microlensing project. The OGLE period values were combined with the 2MASS single-epoch JHK photometric data. For the brighter stars we find agreement with previous results (four different sequences corresponding to different modes of pulsation in AGB stars). We also discovered two distinct and well-separated sequences below the tip of the Red Giant Branch. They consist of almost 10,000 short-period (15 d <P< 50 d), low-amplitude (A_I<0.04 mag) red variable stars, for which we propose that a significant fraction is likely to be on the Red Giant Branch, showing radial pulsations in the second and third overtone modes. The excitation mechanism could be either Mira-like pulsation or solar-like oscillations driven by convection.Comment: 5 pages, 4 figures; accepted for publication in MNRAS (Pink Pages); proof corrections adde

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    Measuring stellar oscillations using equivalent widths of absorption lines

    Get PDF
    Kjeldsen et al. (1995, AJ 109, 1313; astro-ph/9411016) have developed a new technique for measuring stellar oscillations and claimed a detection in the G subgiant eta Boo. The technique involves monitoring temperature fluctuations in a star via their effect on the equivalent width of Balmer lines. In this paper we use synthetic stellar spectra to investigate the temperature dependence of the Balmer lines, Ca II, Fe I, the Mg b feature and the G~band. We present a list of target stars likely to show solar-like oscillations and estimate their expected amplitudes. We also show that centre-to-limb variations in Balmer-line profiles allow one to detect oscillation modes with l<=4, which accounts for the detection by Kjeldsen et al. of modes with degree l=3 in integrated sunlight.Comment: MNRAS (accepted); 7 pages, LaTeX with necessary style file and PostScript figures in a single uuencoded Z-compressed .tar fil

    Wavelength dependence of angular diameters of M giants: an observational perspective

    Get PDF
    We discuss the wavelength dependence of angular diameters of M giants from an observational perspective. Observers cannot directly measure an optical-depth radius for a star, despite this being a common theoretical definition. Instead, they can use an interferometer to measure the square of the fringe visibility. We present new plots of the wavelength-dependent centre-to-limb variation (CLV) of intensity of the stellar disk as well as visibility for Mira and non-Mira M giant models. We use the terms ``CLV spectra'' and ``visibility spectra'' for these plots. We discuss a model-predicted extreme limb-darkening effect (also called the narrow-bright-core effect) in very strong TiO bands which can lead to a misinterpretation of the size of a star in these bands. We find no evidence as yet that this effect occurs in real stars. Our CLV spectra can explain the similarity in visibilities of R Dor (M8IIIe) that have been observed recently despite the use of two different passbands. We compare several observations with models and find the models generally under-estimate the observed variation in visibility with wavelength. We present CLV and visibility spectra for a model that is applicable to the M supergiant alpha Ori.Comment: 16 pages with figures. Accepted by MNRA
    • …
    corecore